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waves, the lateral waves, or even the scattered radiation (far)
fields due to incident surface or lateral waves.

This work is of particular interest in propagation prob-
lems when either the transmitter or receiver are near the
irregular boundary. It is applicable to problems of coupling
into and out of surface-wave structures. The electromagnetic
problems considered here and the dual problems in
acoustics are relevant to geophysical prospecting and active
remote sensing.
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Traveling Waves in Coupled Yagi Structures

CHUN C. LEE anp LIANG C. SHEN, SENIOR MEMBER, IEEE

Abstract—The propagating mode in a coupled Yagi-Uda array of
cylindrical wires is studied. The current distribution in each element,
the phase velocity; and the cutoff frequency of the propagating mode
are found, firstly by a numerical method and secondly by a method
based on an assumed current distribution. These two methods yield
essentially the same results. Mutual coupling between the arrays is
studied. The characteristics of the propagating waves in the coupled
Yagi-Uda structure have been measured. The experimental K-
diagram of the waves is obtained and is found to be in good agreement
with the theory.

I. INTRODUCTION

TRAVELING WAVE can be supported on a periodic
Aarray of identical wires or strips that are equally spaced
and perpendicular to the direction of the array. The exist-
ence of the traveling wave in such a structure, known as an
infinitely long Yagi-Uda array, has been confirmed by
theory and by experiments [1]-[5]. The traveling wave is a
slow wave, that is, the phase velocity is smaller than the
velocity of a uniform plane wave in the same medium in the
absence of the structure. When one of the elements of
the array is excited, currents on the parasitic elements are
induced by a mutual coupling effect, resulting in a traveling
wave. These currents have progressive phase shifts. The
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Fig. 1.

Coupled three-row Yagi-Uda structure.

amount of phase shift and the distribution of the current in
each element are determined by the array geometry. This
information is useful when the structure is employed for uses
such as millimeter waveguides or antennas [6].

In order to carry more power or to divide it equally
among several branches when the structure is used to
transmit millimeter waves, several similar ones may be
arranged in parallel in the same plane, as shown in Fig. 1.
When used as an antenna, this arrangement could produce
an elevation beamwidth that is narrower than that of a single
Yagi array.

The present study also indicates the level of mutual
coupling between two closely spaced Yagi structures when
they are used separately for millimeter-wave transmission.

Little work has been done on the subject of coupled Yagi
arrays. A study was made not long ago to obtain the phase
velocity of a traveling wave on two Yagi arrays arranged in
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the same plane [2]. A disadvantage of this structure is that
the transmission line that excites it is not placed at a neutral
plane. So, the transmission line will radiate [7]. A three-row
Yagi array structure does have a neutral plane. Thus the
transmission line which excites it produces very little
radiation.

II. INTEGRAL EQUATION AND SOLUTION

The coupled Yagi-Uda structureis shown in Fig. 1, where
the physical dimensions of the array (a, b, u, and h) are
defined. Defining ¢ as the incremental phase shift of the
currents in adjacent elements, the current distributions on
the wires at 'y =0 are denoted by I,(z), I,(z), I;(z); at
y=+b LEe™, L)%, Lz)e™™ at y— 124,
I,(z)e*2%, I,(z)e*2?, I (z)e*"2%; and so on. Assuming the
array is made of perfect conductors, the tangential E field
vanishes on the surface of each conductor. An integral
equation is thus obtained:

—(U+H) : H
| dZK(Z - Z)(Z) + | | dZK(Z - Z),(Z)

+]

U+H

—(U+3H)
(U+3H)

dZK(Z — Z),(Z')

for the inner element
for the outer elements

I3 cos Z,
ly cos Z + I, |sin Z|,

(1)
where H=kh, z=kz, U=ku, k=2n/A, and A is the
wavelength in the medium in which the structure is located.

The constants I, I,, and I; depend on the strength of the
traveling wave. The kernel K(z) is given by

K(Z) — Z ei(n¢ + kr,,)/rn

n=—0c0.
r, = [a® + (nb)* + 22|V

it

(2)

The time variable ¢ is assumed.
The boundary conditions on the currents are

L[(U + 3H)] = 0 = L[~ (U + 3H)]
L{(U + H)]=0=L,[—~(U + H)]

LiH)=0=1,{~H} ®)
The integral equation (1) is solved by two methods. In the
first, the unknown currents I,, I,, and I, are treated as
column matrices and the integral equation is solved by
standard moment methods [8]. In the second, the current
distribution is assumed to be a superposition of a set of
specially chosen functions. On the inner element, three-term
theory [9] is applied. The current distribution is approxi-
mated by the sum of a shifted cosine distribution and a
half-cosine distribution. On the outer elements, an anti-
symmetrical component is added. In summary, the currents
are represented by
z H}
— COS —

1,(Z) = Ao[cos Z — cos H] + B, [cos 3 3
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Fig. 2. K-p diagram for a/h = 0.03 and b/h = 0.49 with different separa-
tions (@ = 0.125 cm, b = 1.95 cm, and 4 = 3.95 cm).
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Fig. 3. Measured field intensity in transverse direction x/4 away from the
wire of the middle array for u/h = 0.55 at f = 1.35 GHz (1 = 22.2 cm).

for the inner element
I1,(Z) = Cylcos (Z — 2h — U) — cos H]

. Z — -U
+ D, [sm (Z—-2H - U)——sz—Usm H}

E Z—-2H-U H
+ E4 |cos (*2——) — COS 5
where I5(Z) = I,(— Z), for the outer elements; and 4,, B,,
Co, Dy, E, are the unknown constants. By requiring the
boundary condition to be matched at eight points on the
wires, (1) is converted into a matrix equation and is then
solved.

II1. NUMERICAL RESULTS AND DISCUSSION

The two methods described in the previous section yield
essentially the same numerical results. Detailed discussion
and comparison of the results are given elsewhere [10]. A
typical K-f diagram is shown in Fig. 2. It is seen that as the
arrays are placed closer to each other, the passband of the
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traveling wave is narrower, and the phase velocity, which is
related to @ by V, = (kh/®)(b/h)V,, is lower. Comparison
with the result obtained for a single-row Yagi structure
shows that the coupling effect at U = 2h causes less than a
2-percent change in the K- diagram.

The theoretical result has been verified by experiments
[10], as shown in Fig. 2. Theory also predicts that the field
intensity in the transverse direction (x direction in Fig. 1)
decays exponentially. This is a typical characteristic of a
guided wave. In Fig. 3 the measured field intensity is shown
to decay at approximately 35 dB per wavelength in the x
direction. This shows that the level of mutual coupling in the
transverse direction is rather low when the arrays are
separated by at least one wavelength.
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Coupling of Circuit Structures to Magnetostatic
Modes of Ferromagnetic Resonators

NICOLAS J. MOLL, MEMBER, IEEE

Abstract—The coupling between a current-carrying circuit struc-
ture and the magnetostatic modes of a general ferromagnet, suchas a
YIG resonator, is examined. A small-signal theory is presented that
describes the excitation of an arbitrary mode in terms of an effective
susceptibility matrix; this description leads to a simple method for
calculating the z parameters of the resonator and coupling structure
combination. This result is tested by comparison with other theory
and with experiment. Applied to the case of a uniform field exciting
the uniform mode of an ellipsoidal resonator, it reduces to Carter’s
well-known formula. Applied to the case of a particular nonuniform
field exciting the main mode of a thin square resonator, it predicts the
experimental finding that the coupling strength depends only on the
resonator’s thickness. This last case illustrates the extended genera-
lity of our result which allows the treatment of situations where
the RF magnetization and field are not uniform.

NOMENCLATURE

»f. Coordinate axis unit vectors.
Total magnetic field.
RF demagnetizing field.
h, Circuit induced field.
H; Magnitude of dc field inside resonator.
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Unit vector in the direction of dc magnetization.

Magnitude of applied dc magnetic field.
k, Magnetic coupling function for port p.

k,, Decomposition of k, on ¥,, and ¥ ;.

K, Adjoint of the matrix k .

m RF magnetization.

M Total magnetization.

M, Saturation magnetization.

m, Complex amplitude of the uth eigenfunction.
Sa Surface enclosing the volume Q.

| 4 Resonator volume.

Y Gyromagnetic ratio.

Oy Kronecker symbol.

Lu Matrix of susceptibilities for the uth mode.

b ¢ uth eigenfunction.

Y...¥Y.; Normalized real and imaginary parts of ‘V,.
Aw Unloaded radian bandwidth of resonator.
O Magnetization frequency yM,.

Q All space excluding metallic conductors.

INTRODUCTION

A FERROMAGNETIC resonator was first used in a
practical circuit—a YIG sphere filter gyrator—by
Degrasse [1]. The problem of coupling a circuit, via induced
magnetic fields, to an ellipsoidal resonator was analyzed



